Martin M. Gossner

Introduced tree species in central Europe – consequences for arthropod communities and species interactions

Forests in Europe

Prominent example of an anthropogenically changed ecosystem, affected by humans for >5000 years

Forests in Europe

Forests in Europe

→ Searching for suitable alternative tree species (low risk, high yield) (Bolte et al. 2009)

Change in solid volume [m³/ha] (2002-2012) BWI – Baden-Württemberg

Bolte et al. (2009): Scandinavian Journal of Forest Research 24: 473-482

Research question

What are the consequences for arthropod communities and species interactions?

Discussion still emotional rather than evidence-based

 \rightarrow Need for evidence-based evaluation

Effects of introduced tree species may arise from:

- (1) non-native insect species introduced together with or following the introduction of the tree species
- (2) missing adaptations of native insects to the introduced tree species
- (3) tree structural differences to native tree species
- (4) alterations of the abiotic environment of forests

Effects of non-native insect species

- reduce plant fitness of host in the new range

 (e.g. Dasineura gleditchiae on Gleditsia triacanthos, EPPO 2008)
 → higher when released from top-down control
- switch over to new host plant
 - \rightarrow cause damage

(e.g. Dreyfusia nordmannianae on Abies alba)

 \rightarrow displace native insects

(e.g. cone wasps on *Abies alba,* Auger-Rozenberg & Roques 2012)

Effects of non-native insect species

- affect higher trophic level e.g. suitable food resource for native insects

Gilletteella spp. on Douglas fir

alternative host \rightarrow increases the population density \rightarrow may reduce the risk of herbivore outbreaks on indigenous tree species

Conclusion

- regative as well as positive effects on native plant- and animal communities
- > specific direction and trajectories of effects highly depend on
 - species specific traits
 - number of introduction events
 - phylogenetic distance to native species

Missing adaptations of native insects

- herbivores (host specialists) most severely affected (co-evolution)
- introduced tree species host less herbivores

Missing adaptations of native insects

- Related species should share more species
 - \rightarrow "taxonomic isolation", Conner et al. 1980
 - \rightarrow phylogenetic conservatism of functional plant traits

Conner et al. (1980): Ecological Entomology 5: 205-211; Gossner et al. (2009): American Naturalist 173: 599-614.

Conclusion

The probability of an introduced tree species to be colonized by native insects depends on

- tree-specific physical, chemical and phenological traits
- taxonomic isolation of the introduced species
- its abundance in the introduced range*
- the time since introduction*
- surrounding tree species effects[#]

^{*}Kennedy & Southwood (1984): *Ecological Entomology* 5: 205-211; *Frenzel et al. (2000): *Proceedings IAVS Symposium*: 223-225, *Gossner et al. (2004): *Neobiota* 5: 1-324, # Gossner et al. (2009): American Naturalist 173: 599-614.

Tree structural differences to native tree species

i.e. bark, needle and crown structure

- → affects the number and type of available niches
- \rightarrow affects prey availability
- → affects animal behavior e.g. prey capture guilds Hatley & MacMahon (1980)
- → affects microclimatic conditions

Gossner (2004): Neobiota 5: 1-324, Hatley & MacMahon (1980): Environmental Entomology 9:632-639, Blick & Gossner (2006): Arachnologische Mitteilungen 31: 23-39, Gossner & Utschick (2004): Neobiota 3: 105-122.

Alterations of the abiotic environment of forests

Oxbrough et al. (2016): Forest Ecology and Management 367: 21-29

Conclusion

Tree structure and stand-level effects of introduced tree species depends on

- tree-species identity
- management (tree species mixture, thinning)
- \rightarrow affecting

biotic (plant and litter composition)

and abiotic (microclimate, chemical and physical environment)

stand conditions

Consequences for ecosystem processes

Herbivory

"Enemy Release Hypothesis" (Keane and Crawley 2002; Liu and Stiling 2006)

 exotic plants introduced in a new region are less regulated by herbivores

 \rightarrow increase rapidly in distribution and abundance

- most likely occurs when regeneration is increased
 → due to reduced seed predation
 - → when reduced herbivory increases competitive ability over native tree species

Consequences for ecosystem processes

Herbivory

Gossner & Simon (2005): Neobiota 6: 98-109, Ruff (2008): Diploma thesis, Technische Universität München

Conclusion

Change in community composition of arthropods by the introduction of tree species

- \rightarrow change in trophic interactions
- \rightarrow alteration of ecosystem processes
 - herbivory
 - leaf- and wood decomposition
 - (e.g. Gossner et al. 2016/Kahl et. al. subm.)
 - nutrient cycling
 - pest control (Buxton 1990)

Effects of introduced tree species on organismic communities and related processes

- multifaceted (depends on tree species, tree species mixture, arthropod taxon etc.)
- shaped by arthropod species plasticity
- shaped by arthropod species adaptations
- affected by global change
- → cautious use of introduced tree species from a *nature conservation* as well as from an *economic* point of view

Results

Consequences for ecosystem processes

Alterations of the abiotic environment of forests

Oxbrough et al. (2016): Forest Ecology and Management 367: 21-29, Gossner & Ammer (2006): European Journal of Forest Research 125: 221-235