

Introduced tree species in European forests 2nd – 4th November 2016 Monte Verità, Ascona

Eradication as an option for managing invasive tree species in protected areas

Livia Zapponi, Raffaele Cavalli, Emma Minari & Franco Mason

Introduction

The spread of introduced tree species in natural habitats may have a major impact on native and endemic species.

The data on plant invasion in protected areas (PAs) is both limited and fragmented (Pyšek et al. 2013).

How to manage them?

- Prioritise species according to their potential impact
- Identify conservation goals
- Establish strategies

How does the eradication affect natural re-vegetation?

Establish strategies

- Species specific
 propagule pressure
- Site specific

 not all habitats react in the same way
- How?
 - Mechanical treatments
 - Chemical treatments
 - Combined strategies targeting the different growing stages

Mechanical treatments: sutainability and efficacy

Species & site characteristics:

- ✓ Does it re-sprout?
- ✓ What is its flooding tolerance?
- ✓ How does native vegetation react to disturbance?

Waterlogging

→ Mulching

Root removal

Chemical treatments: potential and risks

Herbicides

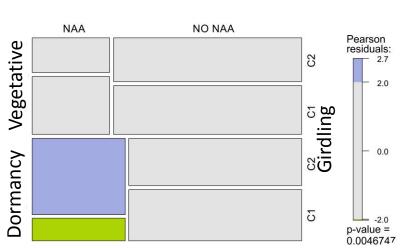
- Have been applied in some protected areas
- Increase the effectiveness of girdling (+)
- Affect non-target species (-)
- Slow degradation in cold climates (-)

Plant growth regulators

- Natural or synthetic compounds (e.g. hormones) influencing developmental or metabolic processes
- Can they be used to increase the efficacy of girdling?

Chemical treatments: experimental application of NAA

No NAA



Eradicate *Quercus rubra* with girdling and α -napthalene acetic acid (NAA)

- ✓ Synthtetic auxin long used for apple thinning
 - ✓ Auxin is the inhibitor of shoot formation
 - ✓ No risks for non-target organisms (US EPA, 2007)

Minari et al. 2015

Eradications in protected islands

Island ecosystems are particularly vulnerable to the invasion of introduced species:

- ✓ Severe impacts: intensive strategies
- ✓ Can they provide useful insights on management approaches?

Anholt, Denmark (Doody 2013)

AIM→ re-establish the lichen-rich communities of the northern grey dunes

Pinus mugo eradication: mosaic burning, grazing, hand removal

Montecristo, Italy (Zanichelli et al. 2014)

AIM > preserve the flora (300 vascularspecies in 10 km²)

Ailanthus altissima eradication: sprayed, painted or injected with glyphosate

Low number of attempts! (Genovesi & Carnevali 2011)


- ✓ restrictions related to presence of endemic species
- ✓ low public awarenes

Characteristic forest of the Po river plain:

Quercus robur, Carpinus betulus, Acer campestre, Ulmus minor

- 1921 National Monument
- WWI-II intense harvest
- 1952-1958 reafforestation: Quercus robur, Quercus rubra, Populus alba, Juglans nigra, Pinus nigra
- 1998 Special Protection Area (Birds Directive)
- 2004 Special Area of Consevation (Habitat Directive)
- Area: 233 ha in total, 198 ha of forest

ntroduced tree species in European

Increasing deadwood and microhabitat availability with alien species

For species that do not re-sprout and whose seedlings do not find suitable conditions for regeneration, eradication provides an opportunity for the creation of habitat trees.

Research Article - doi: 10.3832/ifor1281-007

°iF0

The Habitat-Trees experiment: using exotic tree species as new microhabitats for the native fauna 2014 iForest 8: 464-470

Livia Zapponi (1-2), Emma Minari (1), Luca Longo (3), Ilaria Toni (1), Franco Mason (4), Alessandro Campanaro (1-5)

Tecniche di ripristino del legno morto per la conservazione delle faune saproxiliche

Il progetto LIFE Natura NAT/IT/99/6245 di «Bosco della Fontana» (Mantova, Italia)

A cura di Edited by Raffaele Cavalli, Franco Mason

Techniques for re-establishment of dead wood for saproxylic fauna conservation

LIFE Nature project NAT/IT/99/6245 «Bosco della Fontana» (Mantova, Italy)

Corpo Forestale dello Stato
Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale
State Forestry Service

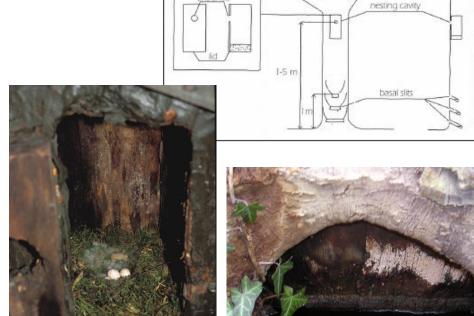
National Centre for the Study and Conservation of Forest Biodiversity VERONA - BOSCO DELLA FONTANA

> Gianluigi Arcari Editore Mantova 2003

Costs of the treatments

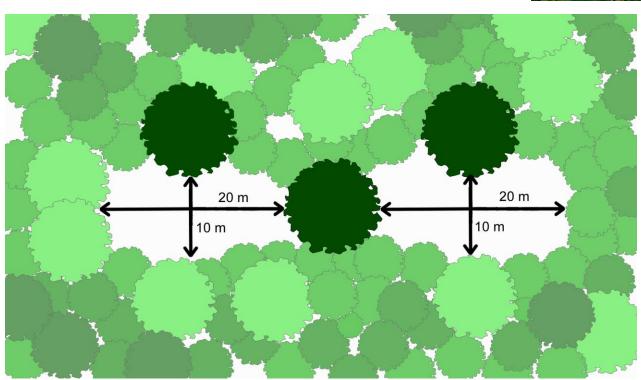
Type of intervention	Operations	Main equipment used
Standing and fallen snags (with winch)	Directional notch and felling cut	Chainsaw
	Trunk breaking	Tractor and winch
	Snag girdling	Bark-stripper
Standing and fallen snags (using explosive charges)	Holes for the explosive	Drill
	Breaking the trunk	Explosive charges
	Snag girdling	Chainsaw and bark-stripper
Artificially uprooted tree	Uprooting	Tractor and winch
Leaning dead tree	Uprooting	Tractor and winch
	Girdling	Chainsaw and bark-stripper
Standing dead tree	Girdling	Chainsaw and bark-stripper
Habitat tree	Basal slits	Chainsaw
	Nest holes	Drill
	Girdling	Bark-stripper

Eradication and restoration in the Bosco Fontana Nature Reserve



✓ The 77% of the trees were still alive after 8 years

 Better thermal insulation compared with nestboxes



Eradication and restoration in the Bosco Fontana

Nature Reserve

Ecological restoration (Larios & Sunding 2013):

- Spontaneous succession
- Technical reclamation
- Assisted succession

Conclusion

- Eradications of invasive tree species require the use of several methods, often used in combination, considering the ecology and growing stage of the species.
- Main current limits:
 - There have only been a few studies that have applied their findings to establish mitigation strategies.
 - There is currently no formal coordination among nature reserves and countries on methods and priorities.
- The challenge for the future is the creation of a common platform:
 - ✓ share strategies
 - ✓ monitor impacts
 - ✓ use long-term results to support best-practices

Thank you for your time

Contact: Livia Zapponi <u>livzap@gmail.com</u>
Bosco Fontana National Centre for Forest Study and Conservation

Corpo Forestale dello Stato
Centro Nazionale per lo Studio e la Conservazione
della Biodiversità Forestale "Bosco Fontana"
- Verona -